第2卷◆第11期◆版本 1.0◆2018年11月 文章类型: 论文|刊号(ISSN): 2425-0082

浅谈房屋建筑中的混凝土工程施工及其质量控制

王洪涛

赤峰五甲万京置业有限公司 DOI:10.32629/bd.v2i11.1797

[摘 要] 混凝土以其高强度与良好工作性能的特点在房屋建筑工程建设中得到广泛应用,并且其施工质量好坏直接关系到建筑安全及其使用,基于此,本文阐述了影响混凝土工程施工的主要因素,对建筑混凝土工程建设常用的施工技术及其施工要点与质量控制进行了探讨分析,旨在提高房屋建筑工程质量。

[关键词] 混凝土工程施工; 影响因素; 房屋建筑; 施工技术; 施工要点; 质量控制

混凝土工程施工关系到房屋建筑工程整体质量,并且建筑混凝土工程施工一旦出现问题则会严重影响人民的生命财产安全,因此为了保障房屋建筑工程建设的顺利进行,必须加强对混凝土恶以施工及其质量控制进行分析。

1 影响混凝土工程施工的主要因素

影响混凝土工程施工的因素主要有: (1)温度因素影响, 混凝土施工过程中,由于其浇筑的温度随着外界温度的变化 而变化。当外界的气温升高时,都会减少混凝土内,外部位的 温差,形成温度应力,温差越大,温度的应力越大,产生的裂 痕也就越大。(2)混凝土自缩因素影响,混凝土是靠两成的水 分来硬化的,其余的都被外界蒸发掉了,当蒸发掉的水分超 过本质上应该蒸发的水分,就会引起混凝土收缩,除此之外, 混凝土材料中夹杂了很多的添加剂和矿渣等,也是对其影响 的重要因素。

2 房屋建筑中的混凝土工程建设常用施工技术及其施工要点分析

2.1 建筑中的常用混凝土施工技术分析

主要有:(1)大体积混凝土施工技术,建筑混凝土工程建 设一般对基础施工要求高,尤其是对施工整体性的要求,并 且经常需要一次连续浇筑完毕,因此需要大量,连续的混凝 土供应和科学的施工组织设计,而大体积混凝土施工技术克 服混凝土间断施工易形成施工缝等问题, 但是由于施工基础 体积较大, 浇筑易产生大量的水化热量, 易产生混凝土内外 温差导致的温度应力,易破坏混凝土表面,产生裂缝,因此在 实际大体积混凝土施工试验中,应强化并控制混凝土内外温 差产生温度变形应力的幅度,避免裂缝产生,并不断提高混 凝土结构的抗裂,防渗和抗侵蚀性能,优化大体积混凝土施 工技术。(2) 混凝土泵送施工技术, 建筑混凝土工程建设中的 泵送混凝土施工技术是利用混凝土泵,通过专用管道将商品 混凝土输送至指定的浇筑位置,一次性完成混凝土的空间输 运和浇筑, 泵送混凝土技术具有输送量大, 效率高, 劳动强度 较低,施工文明等特点,在建筑施工中得到广泛的应用,泵送 混凝土施工技术要求混凝土具有可泵性, 流动性和粘聚性, 通过输运设备不断的搅动,确保混凝土不离析,不泌水,确保 混凝土施工性能,摩擦力小,常选用性能稳定的硅酸盐水泥,

科学试验混凝土不同配比的性能和强度,并结合施工实际,确定合理的混凝土配比,确保施工的强度和性能,混凝土中的砂,石,水泥大小和性能都有严格要求,并适当掺加减水剂等外添加剂,确保混凝土的可泵性和粘聚性。

2.2 房屋建筑中的混凝土工程施工要点分析

主要有: (1) 科学设计混凝土配合比, 混凝土配合比的科 学设计是保障建筑混凝土工程顺利施工的关键,具体而言, 其包含了水泥用量,掺合料,外加剂和砂骨料等材料的选配, 首先从水泥用量的确定来看,水泥用量的适当减少将有效降 低水热化,在设计人员允许的情况下,混凝土应根据为期两 个月的抗压强度进行试配,一般需要经过几十组的试配之后 才可以最终对水泥用量进行确定,在这一过程中,需要先按 照施工拟选择的防裂方案及目前所具备的施工条件进行混 凝土水泥水化热最高温差值, 再在科学计算的基础上对最大 温度收缩应力进行估算, 若在混凝土抗拉强度允许范围内, 那么就说明选择的防裂措施是可行的, 能够对裂缝的出现起 到一定的预防作用, 若没有在抗拉强度的允许范围内, 那么 可以通过降低水化热的温升值,改善施工操作工艺,调整混 凝土的入模温度,提高抗拉强度,降低混凝土内外温差,混凝 土拌合物的性能等进行重新计算,最终保障应力不超出允许 范围才可以进行下一步施工, 其次, 对于其他材料确定, 一是 可以掺加复合型膨胀剂,补偿收缩,二是本着节约水泥用量 的原则, 掺加较多的 1 级粉煤灰掺合料, 增加混凝土的可塑 性。(2) 拌合施工要点分析, 建筑混凝土工程建设中的混凝土 材料确定后, 需要避免采用经验配比的方法, 杜绝少配, 错配, 漏配等影响混凝土质量的事件发生,然后应该对适配完成的 混凝土进行性能的检测,然后才能进行大量的混凝土的拌合, 在施工中应该经常对骨料的含水率进行检测和调整,在向搅 拌机具中投料时应控制在机具的额定容量之下,拌合中应该 随时对拌料坍落度和离析现象进行监测。(3)浇筑振捣施工 要点分析,主要表现为:第一,混凝土浇筑施工要点,混凝土 浇筑施工前,需要检查钢筋和模版,从而保证混凝土的浇筑 条件,同时还需确定浇筑方法的合理性,应保证混凝土下落 高度小于 3m, 如果采用的是分层分块浇筑方法的话, 应该结 合钢筋的密集程度和结构的特点来决定每一层的高度,在分

第 2 卷◆第 11 期◆版本 1.0◆2018 年 11 月 文章类型: 论文|刊号 (ISSN): 2425-0082

层高度的控制上,一般为插入式振捣器作用长度的 1.25 倍, 如果振捣采用的是平板振捣器,则应该控制分层的厚度,不 超过 200mm, 浇筑的过程应该尽量连续, 如果必须出现间隔, 则要尽量的缩短间隔的时间,以保证在前层的混凝土初凝前 可以恢复施工, 较注重应该经常观察和整改钢筋, 模版等设 备的变位现象, 较大的梁体可以进行单独的浇筑, 对连续浇 筑无法实现的部位,应该在剪力较小的地方预留好施工缝。 第二,振捣施工要点分析,振捣是使混凝土能充满模版的每 个角落, 使其获得最大的均匀和密实度, 振捣分为机械和人 工振捣两种,一般只有工程量小,或者采用的是塑性混凝土 的时候才会使用人工振捣的方法, 振捣过程应该快插慢拔, 均匀的选择插点的位置,以防出现漏振的情况,在插入振捣 棒的时候应该使其进入下层混凝土中,以免在两层混凝土中 间出现缝隙,在一个插点应该持续振捣 20-20S,以表面无下 沉, 无气泡, 泛浆或者水平为宜。(4) 养护要点分析, 混凝土工 程建设中的养护要点主要是防止混凝土早期表面失水,过去 混凝土泌水量大,一般采用二次收浆,然后开始养护,防止塑 性收缩裂缝,现代高性能混凝土基本没有泌水,如果风大或 温度高,水分蒸发量大,混凝土表面很快就会出现裂缝,必须 在终凝前再次抹面闭合裂缝, 保温措施是混凝土养护中最重 要的步骤,该措施可以有效确保混凝土表面温度受环境因素 影响而发生的一系列变化,需要严格控制养护期间各层面间 的温差。

3 房屋建筑中的混凝土工程施工质量控制分析

3.1 混凝土工程施工质量的主要影响原因分析

主要表现为: (1)混凝土配合比例的原因,混凝土的配合比例应该满足施工技术的要求,以保证工程的质量和强度,在科学部门所配出来的配合比例并不一定完全适合施工的现况,当施工现场的运输设备,气温等发生了变化之时,应该根据变化来调整混凝土的配合比例。(2)混凝土和易性的原因,和易性指的是混凝土在搅拌时的粘聚性,流动性,保水性等性能的综合,如果混凝土的和易性不好,就可能导致混凝土出现离析现象或者振捣不实,只有混凝土具有良好的和易

性,才便于振实,不会发生离析的现象。(3)施工人员的原因,作为施工的操作者和指挥者,施工人员对混凝土施工质量的影响是无可置疑的,因此在施工的过程中,施工单位应该严格控制各个环节,建立健全的规章制度和和质量控制体系,为了问题能够得到切实的解决,还应该从技术和管理措施两个方面来约束有关的部门和人员,最终用人员的素质来保证施工的质量。

3.2 混凝土工程施工质量控制策略的分析

具体体现在: (1) 合理选择供应商, 在选择商品混凝土的 供应商时, 应该选择信誉好, 资质高的商家, 应该安排好商品 混凝土搅拌站和施工现场之间的联系, 对混凝土浇筑的速度 做好计算, 选择合理的车辆和路线, 使混凝土运至施工现场 时的质量有所保证。(2) 加强现场管理, 应该对施工现场加强 管理, 制定合理的管理制度, 保证施工人员的技术水平, 提高 施工人员的质量意识, 增强施工人员的责任心。(3) 严格施工 操作, 应该在周密的科学组织之上合理安排施工速度, 保证 施工操作严格按照程序进行, 杜绝盲目赶工, 在浇筑工程中 不踩踏钢筋, 不移动预埋的线管, 在混凝土强度达到 1. 2Mpa 前不能踩踏和堆放重物。

4 结束语

综上所述,目前混凝土是建筑工程建设中最主要的原材料,并且建筑工程建设过程中影响混凝土施工的因素比较多,因此在建筑工程建设过程中,需要合理运用混凝土施工技术,并且需要加强其施工要点及其质量进行控制。

[参考文献]

[1]云利江.房屋建筑混凝土工程的施工质量管理[J].建 筑技术开发,2017,44(15):102-103.

[2]莫兴岩.建筑工程中混凝土结构施工质量控制[J].中国新技术新产品,2018,(17):80-81.

[3]费筱.市政工程施工质量影响因素及控制策略探析[J].安徽建筑,2018,24(04):82-83.

[4]周跃兴.建筑混凝土工程施工技术分析[J].河北农机,2018,(05):59.